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von Neumann Mutual Information for Anisotropic
Coupled Oscillators Interacting with a Single
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We consider the interaction between a two-level atom and two electromagnetic fields
injected simultaneously within a cavity, with the interaction between the fields in
parametric frequency-converter form. The wave function in Schrödinger picture is
obtained under certain conditions and consequently the density matrix. By employing
a generalization of the von Neumann mutual information (in the context of Tsallis’
nonextensive statistics) we measure the degree of entanglement for the present system.
An important change is observed in the generalized mutual information depending on
the entropic index. We also measure the minimum degree of entanglement during the
transition from collapse to revival and vice-versa. Successive revival peaks show a
lowering of the local maximum point indicating a dissipative irreversible change in the
atomic state.
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1. INTRODUCTION

Due to the lack of any extensive formalism to deal with a physical system
with long-range forces or long-range memory, a generalization of the Boltzmann–
Gibbs–Shannon entropy for statistical equilibrium was introduced to the physics
world. The main purpose of this generalization is to deal with systems subject
to spatial or temporal long-range interactions making their behavior nonexten-
sive. This situation can be seen, for example, in astrophysical environments and
plasma physics where the range of interactions is comparable to the size of the
system considered. In fact, many relevant mathematical properties of the standard
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thermostatistics are verified by this generalized formalism or can be appropriately
generalized. The new entropy has recently been applied to a variety of physical
problems, for example to obtain (particular) exact time-dependent solutions for a
family of nonlinear Fokker–Planck equations (Eckmann and Ruelle, 1985), where
the maximization of what is called Tsallis entropy (under appropriate constraints)
established its power. Techniques borrowed from Gibbs–Boltzmann or extensive
thermodynamics play an important role in the characterization of complex behav-
ior exhibited by dynamical systems. Analogous notions of entropy, temperature,
pressure, and free energy can be applied to quantify the fractal or multifractal
attractors of chaotic nonlinear mappings (Beck and Schlogl, 1993; Bohr and Tel,
1988; Tsallis, 1988, 1995). Moreover, one can see a generalized entropy is re-
quired to possess the usual properties of positivity, equiprobability, concavity, and
irreversibility, but with a suitable extension of the standard additivity for nonex-
tensivity (Tsallis, 2002). However, it is noticed that the new field of quantum
information and computation has emerged, not only offering the potential of im-
mense practical computing power, but also suggesting deep links between the
well-established disciplines of quantum theory, information theory, and computer
science.

Entanglement was found to be a manipulable resource. Under certain condi-
tions, states of low entanglement could be purified into more entangled states by
acting locally, and states of higher entanglement could be “diluted” to give larger
numbers of less entangled states. A number of entanglement measures have been
discussed in the literature, such as the von Neumann reduced entropy, the relative
entropy of entanglement (Abdel-Aty, 2000; Abdel-Aty and Abdalla, 2002; Plenio
and Vedral, 1998), the so-called entanglement of distillation, and the entanglement
of formation (Bennett et al., 1997). Several authors proposed physically motivated
postulates to characterize entanglement measures (Abdel-Aty, 2000; Abdel-Aty
and Abdalla, 2002; Bennett et al., 1997; Horodecki et al., 2000; Phoenix and
Knight, 1988, 1991a,b; Plenio and Vedral, 1998; Vedral et al., 1997). These postu-
lates (although they vary from author to author in the details) have in common that
they are based on the concepts of the operational formulation of quantum mechan-
ics (Kraus, 1983). A method using quantum mutual entropy to measure the degree
of entanglement in the time development of the Jaynes–Cummings (JC) model
has been adopted in Furuichi and Ohya (1999), which we called DEM (degree of
entanglement due to mutual entropy). We have formulated the entanglement in the
time development of the JC-model with squeezed state (Furuichi and Abdel-Aty,
2001), and then we have shown that the entanglement can be controlled by means
of squeezing.

For those reasons we devote the present paper to a rigorous formal derivation
of a mathematical expression for the generalized mutual information based on
Tsallis entropy, and use that to study the degree of entanglement for the interaction
between a two-level atom and two electromagnetic fields injected simultaneously
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within a perfect cavity, taking into consideration the effect of the interaction
between the fields themselves. In this case the Hamiltonian will include the field–
field interaction as well as the atom-fields.

It is well known that two types of interaction occur between the fields,
frequency conversion and parametric amplification. In the present paper we shall
take the interaction to be a parametric frequency conversion. The parametric
frequency conversion as it stands is described by a process of exchanging photons
between two optical fields of different frequencies, and can be applied to describe
various optical phenomena, e.g., to find analogies between frequency conversion
and beam splitting (Plastino and Plastino, 1995), or as a lossless linear coupler.
In this situation the model is considered to be represented by two electromagnetic
waves which are guided inside a structure consisting of two adjacent and parallel
waveguides; the linear exchange of energy between these two waveguides is
established via the evanescent field. To describe the above system we shall devote
the following section to introduce a new Hamiltonian model which consists of
three parts; free fields, atom-fields, and field–field, where the solution of the wave
function is given. In Section 3 we introduce in brief the generalized von Neumann
mutual entropy. Our results and their discussion is given in Section 4, followed by
the conclusion in Section 5.

2. ATOM-FIELD HAMILTONIAN

In the framework of the rotating wave approximation we introduce a general-
ized model Hamiltonian representing the interaction between a two-level atom and
two fields injected simultaneously within a perfect cavity. We take the interaction
between the fields to be of the parametric down-converter type. The Hamiltonian
consists of three parts and can be written as

Ĥ = ĤA + ĤFF + ĤAF, (1)

where ĤA is the atomic part of the Hamiltonian and has the form

ĤA = hω0

2
(|e〉〈e| − |g〉〈g|) . (2)

The transition frequency between the energy levels for the state |e〉 and |g〉 is
defined by ω0 = (Ee − Eg)/h. The other part of the Hamiltonian ĤFF represents
the field–field interaction and has been taken as frequency converter type which
has the expression

ĤFF = hω1â
†
1 â1 + hω2â

†
2 â2 + λh

(
â
†
1 â2 + â

†
2 â1

)
, (3)

where ω1 and ω2 are the field frequencies, and λ is the coupling parameter, while
âi and â

†
i , are respectively the annihilation and the creation operators for the ith

mode of the cavity field satisfying [âi , â
†
j ] = δij . The other interaction part of the
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Hamiltonian ĤAF is the electric-dipole approximation, which can be written as

ĤAF = hλ1(â†
1 ⊗ |g〉〈e| + â1 ⊗ |e〉〈g|) + hλ2(â†

2 ⊗ |g〉〈e| + â2 ⊗ |e〉〈g|), (4)

where |i〉〈j |, (i, j = e, g) are the atomic pseudospin operators. λj , j = 1, 2 rep-
resent the effective coupling parameters between the atomic system and the field
modes. In order to discuss the dynamics of the system we have to find either
the solution of Heisenberg equations of motion or to find the explicit expression
for the wave function in Schrödinger representation. However, before we proceed
further let us introduce the canonical transformation

â1 = b̂1 cos ξ + b̂2 sin ξ, â2 = b̂2 cos ξ − b̂1 sin ξ, (5)

where ξ = 1
2 tan−1( 2λ

ω2−ω1
), and the operators b̂i and b̂

†
j satisfy the commutation

relation [b̂i , b̂
†
j ] = δij = 1 if i = j and zero otherwise. It should be noted that

the connection between the states |m1,m2〉a ( say) corresponding to the physical
operators âi and â

†
i , i = 1, 2 and the states |n1, n2〉b corresponding to the rotated

operators b̂j and b̂
†
j , j = 1, 2 are given by

|m1,m2〉a =
m1∑
i=0

m2∑
j=0

(−)j
(

m1

i

) (
m2

j

)(
n1!n2!

m1!m2!

) 1
2

×(cos ξ )m2−j+i(sin ξ )m1−i+j |n1, n2〉b, (6)

where n1 = i + j, and n2 = m1 + m2 − i − j. In this case one can show that
â
†
i âi |m1,m2〉a = mi |m1,m2〉a, i = 1, 2 and similarly for the other operators

b̂
†
j b̂

†
j |n1, n2〉 = nj |n1, n2〉, j = 1, 2 .

After we applied the canonical transformation (5) the Hamiltonian (1) takes
the form

Ĥ =
2∑

i=1

h�ib̂
†
i b̂i + hω0

2
(|e〉〈e| − |g〉〈g|) + hµ1

(
b̂
†
1 |g〉〈e| + b̂1|e〉〈g|)

+hµ2
(
b̂
†
2 |g〉〈e| + b̂2|e〉〈g|), (7)

where µi, i = 1, 2 are the modified coupling parameters given by

µ1 = (λ1 cos ξ − λ2 sin ξ ),

µ2 = (λ2 cos ξ + λ1 sin ξ ), (8)

and �i, i = 1, 2 are the new free field frequencies such that

�1 = (ω1 cos2 ξ + ω2 sin2 ξ − λ sin 2ξ ),

�2 = (ω2 cos2 ξ + ω1 sin2 ξ + λ sin 2ξ ). (9)
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In the interaction picture the Schrödinger equation can be written as follows

ih
∂|ψ(t)〉

∂t
= V I(t)|ψ(t)〉, (10)

where V I(t) is the interaction term which is of the form

V I(t) = µ1
[
b̂
†
1 ⊗ σ̂−ei	1t +b̂1 ⊗ σ̂+e−i	1t

]
+µ2

[
b̂
†
2 ⊗ σ̂−ei	2t + b̂2 ⊗ σ̂+e−i	2t

]
, (11)

with the new detuning parameters 	j = (�j − ω0), j = 1, 2.

Since the interaction Hamiltonian after we apply the canonical transformation
is given in terms of the rotating operators, we have to write the state |ψ(t)〉 in
terms of the number states belonging to the same operators. However, due to the
difficulty in solving the system of equations resultant of the Schrödinger equation,
we shall adjust the coupling parameter λ to take the form

λ = λ1λ2

(λ1 + λ2)
ε, where ε = ω2 − ω1

λ2 − λ1
, (12)

In this case the restrictive condition (12) implies that the coupling parameter µ1

tends to zero while the coupling parameter µ2 survives and equals η =
√

λ2
1 + λ2

2.

Here we may point out that the operator N̂1 = b̂
†
1 b̂1 is a constant of the motion

and this in fact allows us to find the explicit solution of the wave function in
the present case. This can be seen from Eq. (8) as a consequence of assuming
the coupling parameter µ1 = 0. It also interesting to point out that if the field
frequencies ω1 = ω2 then the system will reduce automatically to the isotropic
case, for more details see Abdalla et al. (2002). Consequently we can write after
some manipulations the wave function |ψ(t)〉 as follows

|ψ(t)〉 =
∞∑

n1,n2=0

[
cos

θ

2

{
cos gn2+1t − i

	2

2

sin gn2+1t

gn2+1

}
qn1,n2

−ie−iφ sin
θ

2

sin gn2+1t

gn2+1
{η

√
n2 + 1qn1,n2+1}

]
|n1, n2〉b ⊗ |e〉

+
∞∑

n1,n2=0

[
e−iφ sin

θ

2

{
cos gn2 t + i

	2

2

sin gn2 t

gn2

}
qn1,n2

−i cos
θ

2

sin gn2 t

gn2

{η√
n2qn1,n2−1}

]
|n1, n2〉b ⊗ |g〉.

=
∞∑

n1,n2=0

[A(n1, n2, t)|n1, n2〉b ⊗ |e〉 + B(n1, n2, t)|n1, n2〉b ⊗ |g〉]

(13)
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where gn2 =
√

	2
2

4 + η2n2. Here we may point out that in Eq. (13) the combination
between the excited state and the ground state of the atom has been taken initially
in the form

|ψ(0)〉 =
∞∑

n1,n2=0

qn1,n2

[
cos

θ

2
|e〉 + sin

θ

2
e−iφ|g〉] ⊗ |n1,n2〉b], (14)

therefore to reach the excited states we have to take θ = 0 while the ground states
correspond to θ = π.

It would be interesting to say that, in the present case of the two modes
the time evolution of the wave function depends on the initial photon number
distribution especially in the rotated modes as they appear in the last equation.

In what follows we consider the two modes of the field in the rotated bases
to be uncorrelated coherent state |β1, β2〉 = |β1〉 ⊗ |β2〉 such that

|β1, β2〉 = exp

(
−1

2

[|β1|2 + |β2|2
]) ∞∑

n1,n2=0

β
n1
1 β

n2
2√

n1!n2!
|n1, n2〉b

=
∞∑

n1,n2=0

qn1,n2 |n1, n2〉b, (15)

and therefore the quantity qn1,n2 in Eq. (13) represents the amplitude of the state
|nj 〉b of the j th mode. It takes the form qnj

= (βn
j /

√
nj !) exp(−nj/2) with βj =√

n̄j exp(iζj ), n̄j and ζj represent the initial average photon number and the phase
angle of the excitation for j (j ≡ 1, 2) mode, respectively, in a coherent state.

For such coherent states it is easy to establish that

β1 = α1 cos ξ − α2 sin ξ, and β2 = α2 cos ξ + α1 sin ξ, (16)

where αi, is the eigenvalue of the physical operators âi , i = 1, 2 with respect to
the coherent states |αi〉.

The Eq. (16) governs the relation between the photon states in the original
(physical ) and the rotated (artifical) states. Therefore, if we use this relation, then
one can transform from one set of bases to another. When the two modes are
uncorrelated then qn1,n2 in Eq. (15) can be factored into two modes of which one
depends on n1 and the other depends on n2. Hence the summation over n1 factors
is out because the argument of the sinusoidal function depends on n2 only and we

are left with a modified JCM with vacuum Rabi frequency η =
√

λ2
1 + λ2

2 and the
effective mode in this case is the b2 mode.

Although the expression of the wave function in the present case is similar
to that of the isotropic case, see Abdalla et al. (2002), however there is a main
difference between the two cases, that is; the detuning parameter 	2 includes the
ratio between the two coupling parameters λ1, λ2 and in addition it includes the
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frequencies of the two fields and the atom. Thus, in our computations we have not
to ignore this fact. Having obtained the explicit form of the wave function, we are
therefore in a position to discuss the statistical properties of the system. Our main
purpose is to study the effects of all parameters on the degree of entanglement,
where we shall take into consideration strong and weak coupling regimes. This
will be seen in the following section.

3. GENERALIZED VON NEUMANN MUTUAL ENTROPY

Since we are concerned with studying the effect of the generalized von
Neumann mutual entropy on the Hamiltonian system (1), therefore, let us first
introduce some essential concepts related to it. Suppose N be a positive constant
integer, and let us denote by IN = {1, 2, . . . , N} the set of integers from 1 to N,

and suppose we define the set of all probability distributions on IN by

AN =
{

(p1, . . . , pN ) ∈ 	, 0 ≤ pi ≤ 1 ∀ i ∈ IN , and
N∑

i=1

pi = 1

}
.

(17)
Then Tsallis’ thermostatistics is recognized as a new paradigm for statistical me-
chanical considerations. One of its crucial ingredients, Tsallis’ normalized prob-
ability distribution is obtained (Tsallis et al., 1998) by the well known MaxEnt
definition (Jaynes, 1963; Katz, 1967). Now let us define the function Sq(the gen-
eralized entropy) on AN by

Sq =




− k
q−1

(
1 −

n∑
i=1

p
q

i

)
, q �= 1

−k
n∑

i=1
pi ln pi, q = 1

(18)

where q ∈ 	, q > 0, and k a positive constant. The index q is a parameter unknown
a priori and widely believed to be fixed by dynamical details beyond thermody-
namical feature of the systems. Therefore, if we denote by O

(i)
j (j = 1, . . . , n) the n

relevant observables (Fick and Sauerman, 1990), then the generalized expectation
values 〈〈Oj 〉〉q, are given by

〈〈Oj 〉〉q =
∑n

i=1 p
q

i O
(i)
j∑n

i=1 p
q

i

. (19)
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In the case of a continuous probability distribution on 	 with density ρ, the
definition given by (18) can be written as

Sq =



− k
q−1

∫ {
1 − (ρ(x))q−1

}
ρ(x)dx, q �= 1

− ∫
ρ(x) ln ρ(x)dx, q = 1

. (20)

Thus we can regard the ordinary statistical mechanics as a special case of the
generalized formalism. From the experimental work there is growing evidence
that q �= 1 yields a correct description of many complex physical phenomena,
including for example hydrodynamic turbulence (Arimitsu and Arimitsu, 2000;
Beck, 2000a), scattering processes in particle physics (Beck, 2000b; Bediaga et al.,
2000), and self-gravitating systems in astrophysics (Lavagno et al., 1998; Plastino
and Plastino, 1993). Based on the entropy Eq. (20), a wealth of papers (see
for example (http://tsallis.cat.cbpf.br/biblio.htm) as an updated list) have been
presented developing an alternative thermodynamical formalism and applying
it to actual physical systems. The central object of information theory, the en-
tropy,which has been introduced in quantum mechanics by von Neumann (Ohya,
1983)

S(ρ̂) = −T rρ̂ ln ρ̂, (21)

where ρ̂ is a density matrix. Its relationship to the Shannon entropy H (ρ̂) =
−�p(X = xi) ln p(X = xi), as our measure of the information contained in a
random variable X governed by probability distribution p. The above equations
become obvious when considering the von Neumann entropy of a mixture of
orthogonal states. In this case, the density matrix ρ̂ contains classical probabilities
pi on its diagonal, and S(ρ̂) = H (ρ̂). In general, however, quantum mechanical
density matrices have off-diagonal terms, which, for pure states, reflect the relative
quantum phase in superpositions. In classical statistical physics, the concept of
conditional and joint probabilities has given rise to the definition of conditional
and joint entropies. If ρ̂ describes a pure state, then the entropy tends to zero, and
if ρ̂ describes a mixed state, then the entropy does not equal to zero. Consider F

and A that interact with each other. How are the entropies of these systems related
to the entropy of the composite system that comprises them both?. The answer to
this question was listed by the Araki-Lieb theorem (Araki and Lieb, 1970). Let SF

and SA denote the entropies of the two interacting systems and let S be the entropy
of the composite system. Araki and Lieb showed that these entropies satisfy the
“triangle inequalities”

|SA − SF| ≤ S ≤ SA + SF. (22)

Quantum entropies are generally difficult to compute because they involve the
diagonalization of large density matrices (in many cases, infinite dimensional).
Thus explicit illustrations of the inequalities Eq. (22) are difficult to come by.
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Phoenix and Knight (1988, 1991a,b) gave a nice illustration of these inequalities
in the context of the JC model. They considered a two-level atom interacting with
an undamped cavity initially in a coherent state. In this case the composite entropy
is initially zero and remains zero at all times because the atom–field system is
isolated from its environment. Under those circumstances the latter inequality
S ≤ SA + SF is trivially satisfied whereas the former implies that SF = SA. It is
easy to calculate the atomic entropy SA but the calculation of the field entropy
SF is more problematic. However, Bediaga et al. (2000) succeeded in evaluating
the field entropy in closed from and showed that it did indeed equal the atomic
entropy at all times. The entropies of the atom and the field, when treated as a
separate system, are defined through the corresponding reduced density operators
by

SA(F) = −T rA(F){ρ̂A(F) ln ρ̂A(F)}. (23)

The field entropy as a measurement of the degree of entanglement between the
field and the atom of different systems has been used (see, for example, Abdel-
Aty, 2003; Abdel-Aty et al., 2002; Abdel-Aty and Furuichi, 2002). Also, the time
development of the entangled state in the JCM has been studied by applying
entanglement degree due to (quasi-) mutual entropy which is a special case of the
quantum relative entropy type measure (Furuichi and Abdel-Aty, 2001; Furuichi
and Ohya, 1999).

A quantity also used to compare distributions as well as quantum states is
the mutual information or mutual entropy (Arimitsu and Arimitsu, 2000; Beck,
2000a). The quantum (von Neumann) mutual information S(ρ) relative to two
subsystems (A and F) may be written as

S(ρ) = S(ρA) + S(ρF) − S(ρAF) (24)

where S(ρA), (S(ρF)) is the entropy relative to the subsystem A(F), and S(ρAF) is
the entropy of the overall state, described by a density operator ρAF. The reduced
density operators relative to the subsystems, ρA and ρF are obtained from ρAF

through the usual partial tracing operation, ρA(F) = T rF(A)ρAF. We may write

ρ̂F(t) = |C(t)〉〈C(t)| + |S(t)〉〈S(t)|, (25)

where the bimodal field states |C(t)〉,and |S(t)〉, are given by

|C(t)〉 =
∞∑

n1=0

∞∑
n2=0

A(n1, n2, t)|n1, n2〉, |S(t)〉 =
∞∑

n1=0

∞∑
n2=0

B(n1, n2, t)|n1, n2〉.

(26)
The generalization of the von Neumann mutual information based on Tsallis
entropy can be written as,

ϒTsa. = S(ρqA) + S(ρqF) − S(ρqAF). (27)
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This quantity would represent a generalization of the measure of correlations for a
wider class of quantum systems. Next, we construct the most general composable
entropy which is reduced into a function of two subsystem Tsallis entropies S(ρqA)
and S(ρqF) defined as (Vidiella-Barranco, 1999)

ϒTsa. = 1

1 − q

[
1 +

[ 〈C(t)|C(t)〉+〈S(t)|S(t)〉
2

+ 1

2

{
(〈C(t)|C(t)〉 − 〈S(t)|S(t)〉)2

+4|〈C(t)|S(t)〉|2)

}1/2]q]
+ 1

1 − q

[ 〈C(t)|C(t)〉 + 〈S(t)|S(t)〉
2

−1

2

{
(〈C(t)|C(t)〉 − 〈S(t)|S(t)〉)2 + 4|〈C(t)|S(t)〉|2

}1/2]q

− 2

1 − q

{
〈C(t)|C(t)〉q + 〈S(t)|S(t)〉q

}
, (28)

In the above equation, the generalized mutual information has been given as a
function of the entropic parameter q. In the case of q = 1 we get the usual von
Neumann mutual information. In the next section we shall discuss the dynamical
behavior of the generalized mutual information entropy of the present model based
on Tsallis entropy.

4. DISCUSSION OF THE RESULTS

In the present section we shall examine and discuss the effect of the variation
of the entropic index q on the generalized mutual information entropy related to
the system based on the Hamiltonian given by Eq. (1). As initial condition and for
all our plots we have taken the coherence parameter αi to be real, where its square
represents the intensity of the initial coherent field. In the mean time our numerical
results have been taken for different values of the involved parameters, and with
a great precision an excellent accuracy for the behavior of the generalized mutual
information entropy function ϒTsa. has been determined.

As a result of the constraint we have imposed on the system and to avoid any
violation may occur when λ1 → λ2 we have to restrict our discussion to the case in
which the coupling parameters λ1 �= λ2. This means we shall consider two cases;
one when λ2/λ1 � 1 or λ1/λ2 � 1 (strong coupling case) while the other case

is when (ω2 − ω1) � η =
√

λ2
1 + λ2

2 (weak coupling case). However the special
case in which λ1 → λ2 can only be considered if one takes ω1 → ω2 in the same
time. In Fig. 1, we plot the generalized mutual information entropy ϒTsa. given
by Eq. (28) as a function of the scaled time ηt . We have assumed that θ = π/3
(corresponding to the coherent atomic state), φ = 0 and the field in the coherent
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Fig. 1. The evolution of the generalized mutual information as a function of the scaled time ηt .
Calculations assume that θ = π/3, φ = 0 and the field in the coherent state with α1 = 5, α2 = 1,
ω1/η = 0.5, ω2/η = 1, the detuning parameter (δ = ω2 − ω0 = 0), λ2/λ1 = 1.2, and for different
values of q where (a) q = 2, (b) q = 5.

states with α1 = 5, α2 = 1. Moreover let us rewrite the detuning parameter 	2 as

	2 = δ1 sin2 ξ + δ2 cos2 ξ + λ sin 2ξ, (29)

where δi, i = 1, 2 are partial detuning parameters defined by δi = ωi − ω0. If
we assume ω2 = ω0 corresponding to the exact resonance between the second
mode and the atom, then the detuning parameter 	2 in this case is equal (ω1 −
ω0)λ2

2. This means that the Rabi frequency and consequently the behavior of the
generalized mutual information entropy will still be affected by the frequencies of
one of the fields and the atom. For fixed values of the field frequencies ω1 = 0.5
and ω2 = 1 and for the case in which λ2/λ1 = 1.2 we can easily realize in general
that as we increase the value of the parameter q (entropic index) there is a decrease
in the value of the entropy and consequently we should expect weak entanglement
between the fields and the atom. This phenomenon may be compared with the
atom–field interaction in the presence of the Kerr-like medium where we can see
for small values of the Kerr-like medium, there is an increase of the sustainment
time of the maximum field entropy and strong entanglement of the field with the
atom, while for large values, it results in a decrease of the field entropy, and the
field is disentangled from the atom during the time evolution (Abdel-Aty, 2000;
Abdel-Aty and Abdalla, 2002; Plenio and Vedral, 1998). However, in the present
case it is also noted that the behavior of the function is quite different to that
of the case of the Kerr-like medium. For example, we can observe increment in
the value of the entropy after onset of the interaction but for short period of the
time, followed by a rapid fluctuation with a strong collapse behavior compared
to the rest of the interaction time, see Fig. 1. However for the Kerr-like medium
case one can see decrease in the entropy after onset of the interaction. Also,
the amplitude in the present case is smaller than that for the case of the Kerr-
like medium. Further increase in the value of the entropic index leads to more
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Fig. 2. The same as in Fig. 1 but λ2/λ1 = 2.

decrease in the maximum value of the generalized mutual information entropy.
While decrease in the ratio value of the coupling parameters λ2/λ1 = 0.7 leads to
decrease in the interference between the fluctuations where more revival periods
can be realized, see Fig. 2. On the other hand, if we increase the ratio of the
coupling parameters then the situation lightly changes, see Fig. 3. For example
when we take λ2/λ1 = 2 then we find for the case in which the entropic index
q = 2 the generalized mutual information entropy reaches its maximum value
similar to the previous case, but the amplitude of the oscillations becomes smaller.
This indicates that when the coupling parameter λ2 is twice the coupling parameter
λ1 the entanglement between the fields and the atom gets more stronger than that
of the previous case but just for the particular value of the entropic index q = 2
and for a certain period of the time. This behavior has been observed for the other
values of q > 2 , however the function never attained its maximum value again,
but it tends asymptotically to zero as q increases.

When we have examined the weak coupling case (ω2 − ω1) � η (which is not
displayed here) the system shows disentanglement immediately after an increase
in the value of the entropic index q > 1. Further computations (see Fig. 4) show
that as soon as we decrease the value of one of the mean photon numbers such

Fig. 3. The same as in Fig. 1 but λ2/λ1 = 0.7.
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Fig. 4. The same as in Fig. 1 but α1 = 5, α2 = 0.01.

that α1 = 5, α2 = 0.01 and without making any changes in the values of the other
parameters but taking into consideration the ratio of the coupling parameters to be
λ2/λ1 = 1.2 we find that the amplitudes of the fluctuations are increased and the
phenomenon of collapses which has appeared in the previous two cases washed
out while the revivals become more pronounced. The effect of the entropy index
parameter is also obvious in this case too, where we can see decrease in the entropy
value as q increases.

5. CONCLUSION

In the above sections of the present paper we have introduced a new model
of Hamiltonian. This model represents the interaction between a two-level atom
and two electromagnetic fields injected simultaneously within a cavity. The inter-
action between the fields themselves have been taken into consideration. Under
a certain integrability condition, exact expression for the wave function is ob-
tained. Based on the wave function we have employed a generalization of the
quantum mechanical von Neumann’s mutual information within Tsallis’ nonex-
tensive statistics to examine the effect of the entropic index on the degree of
entanglement. The observable-independent quantity, here denoted as STsa., is im-
portant for determining the degree of entanglement between different subsys-
tems. This work can be regarded as a first attempt to establish a connection be-
tween an intrinsic property of physical systems and the measure of the degree of
entanglement.
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